HDL-direct FL

USO

Reactivo para la determinación cuantitativa in vitro de colesterol-HDL en los fluidos biológicos.

RESUMEN

Desde hace algún tiempo se conoce la relación existente entre el nivel de colesterol total en la sangre y la cardiopatía isquémica (CI-ID). En los últimos años, además del colesterol total, el colesterol transportado por las lipoproteínas de alta densidad (HDL-C) se ha convertido en una herramienta importante para la evaluación del riesgo individual de CI-ID, ya que se ha demostrado una relación clara entre los niveles de HDL-C y la incidencia de IC-ID.

PRINCIPIO

El anticuerpo anti β-lipoproteína humana contenido en el reactivo R1 se une a las lipoproteínas (LDL, VLDL y quilomicrones) con exclusión de HDL. Con la adición del reactivo R2, los complejos antígeno-anticuerpo formados bloquean las reacciones enzimáticas. La colesterol esterasa (CHE) y la colesterol oxidasa (CO) contenidas en el reactivo R2 reaccionan solo con la fracción HDL de colesterol en la muestra. El peróxido de hidrógeno producido por las reacciones enzimáticas con HDL-C forma un complejo de color azul como resultado de la condensación oxidativa de F-DAOS [N-etil-N- (2-hidroxi-3-sulfopropil) -3,5-dimetoxi-4-fluoroanilina sal de sodio] y 4-aminoantipirina (4-AAP) en presencia de peroxidasa (POD).

Midiendo la absorbancia del complejo de color azul a la longitud de onda 593 nm se puede calcular la concentración de HDL-C en la muestra, comparándola con la absorbancia del calibrador.

COMPONENTES SUMINISTRADOS

Solo para uso diagnóstico in vitro.

Los componentes del kit, conservados a 2-8 °C, se mantienen estables hasta la fecha de caducidad indicada en el envase.

Conservar protegido de la luz directa.

HDL-C R1	F080	3 x 20 ml (líquido) cápsula azul
	F245	9 x 20 ml (líquido) cápsula azul
	F400	3 x 100 ml (líquido) cápsula azul

Composición: tampón de Good 30 mmol/l pH 7.0, 4-aminoantipirina 0.9 mmol/l, POD 2400 U/l, ascorbato oxidasa 2700 U/l, anticuerpo anti lipoproteínas humanas, mezcla de 5-cloro-2-metil-2-H-isotiazol-3-ona y 2-metil-2-H-isotiazol-3-ona (3:1) en concentración 0.0015-0.06%.

HDL-C R2	F080	1 x 20 ml (líquido) cápsula roja
	F245	3 x 20 ml (líquido) cápsula roja
	F400	1 x 100 ml (líquido) cápsula roja

Composición: tampón de Good 30 mmol/l pH 7.0, colesterol esterasa 4000 U/l, colesterol oxidasa 20000 U/l, F-DAOS 0.8 mmol/l.

Conservar todos los componentes a 2-8 °C.

MATERIALES NECESARIOS NO SUMINISTRADOS

Instrumental normal de laboratorio. Espectrofotómetro UV/ VIS con control termostático. Micropipetas automáticas. Cubetas de vidrio óptico o desechables de poliestireno óptico. Solución fisiológica.

PREPARACIÓN DEL REACTIVO

Utilizar los reactivos separados.

Estabilidad: hasta la caducidad en la etiqueta a 2-8 °C. Estabilidad tras la primera apertura: 60 días a 2-8 °C.

PRECAUCIONES

HDL-C R1: No está clasificado como peligroso.

HDL-C R2: No está clasificado como peligroso.

La N-acetilcisteína (NAC), el metamizol y el paracetamol pueden causar interferencia en la reacción de Trinder.^(1,2) Para evitar la interferencia, la extracción de sangre debe realizarse antes de la administración del fármaco.

MUESTRA

Suero. Se recomienda realizar la prueba inmediatamente después de la extracción. El ácido ascórbico, la bilirrubina y la hemoglobina no producen interferencias significativas.

PROCEDIMIENTO

Camino óptico: Temperatura:	1 cm 37 °C	
pipetear en cubeta el reactivo R1:		360 µl
añadir la muestra:		4 ul

mezclar,	incubar	a 37	°C durante	5 minutos.

mezclar, incubar durante 5 minutos a 37 °C. Medir la absorbancia del calibrador (As) y de la muestra (Ax) contra el blanco de reactivo.

CÁLCULO DE LOS RESULTADOS

muestra suero/plasma:

Longitud de onda

HDL-C mg/dl = Ax/As x valor del calibrador

INTERVALOS DE REFERENCIA

Hombre adulto: 35.3 - 79.5 mg/dl Mujer adulta: 42.0 - 88.0 mg/dl

Cada laboratorio deberá establecer sus propios intervalos de referencia en relación con la población propia.

CONTROL DE CALIDAD- CALIBRACIÓN

Se recomienda la ejecución de un control de calidad interno. Para ello, están disponibles a petición los siguientes sueros de control de base humana:

QUANTINORM CHEMA - MULTINORM CHEMA

con valores posiblemente en los intervalos de normalidad, **QUANTIPATH CHEMA - MULTIPATH CHEMA** con valores patológicos.

Si el sistema analítico lo requiere, está disponible un calibrador multiparamétrico con base humana:

AUTOCAL H

Contactar con el Servicio al cliente para más información.

PRESTACIONES DE LA PRUEBA

Linealidad

El método es lineal hasta 220 mg/dl.

Si el resultado fuese superior, se recomienda diluir la muestra 1+9 con solución fisiológica y repetir la prueba, multiplicando el resultado por 10.

Sensibilidad/límite de detectabilidad

El método puede discriminar hasta 1 mg/dl.

Interferencias

No se han encontrado interferencias en presencia de:

hemoglobina ≤ 500 mg/dlbilirrubina libre ≤ 50 mg/dlbilirrubina conjugada ≤ 40 mg/dlácido ascórbico ≤ 50 mg/dl

Precisión

en la serie (n=10)	media (mg/dl)	SD (mg/dl)	CV%
muestra 1	32.1	0.18	0.55
muestra 2	88.9	0.61	0.68

Comparación entre métodos

La comparación con un método disponible en el mercado ha dado los siguientes resultados en 50 muestras

HDL-direct Chema = x HDL-C competencia = y n = 50

y = 0.96x + 2.5 mg/dl $r^2 = 0.998$

INFORMACIÓN PARA LA ELIMINACIÓN

El producto está destinado al uso en laboratorios de análisis profesionales.

P501: Eliminar el contenido en conformidad con la reglamentación nacional/internacional.

BIBLIOGRAFÍA

1) N-acetylcysteine interference of Trinder-based assays. Genzen JR, Hunsaker JJ, Nelson LS, Faine BA, Krasowski MD. Clin Biochem. 2016 Jan;49(1-2):100-4

2) Drug interference in Trinder reaction.

Wiewiorka O, Čermáková Z, Dastych M. Euromedlab 2017. ISSN 1437-4431

3) Rifai, N., Warnick, G.R. Ed. Laboratory Measurement of Lipids, Lipoproteins and Apolipoproteins AACC Press. Washington, DC, USA, 1994

4) Burtis, C. A and Ashwood, E. R., Ed. Tietz Textbook of Clinical Chemistry, 2nd Ed., Saunders, Philadelphia, 1994. 5) Gordon, T., Castelli, W.P., Hjortland, M.C., et al., Am. J. Med 62,707 - 714, (1977)

FABRICANTE

Chema Diagnostica

Via Campania 2/4 60030 Monsar

60030 Monsano (AN)
Tel.: +39 0731 605064
Fax: +39 0731 605672
Correo electrónico: mail@chema.com
Sitio web: http://www.chema.com

LEYENDA DE LOS SÍMBOLOS

IVD producto sanitario para diagnóstico in vitro

número de lote

REF número de catálogo

___ atención

consultar las instrucciones de uso

